Cálculo del Abonado del Naranjo bajo Riego con Aguas Residuales Depuradas Urbanas

Francisco Medina Jiménez Agente de Extensión Agraria Agencia Comarcal de Extensión Agraria de Telde Cabildo de Gran Canaria

El naranjo es un árbol exigente en cantidad y calidad de agua, estimándose las necesidades hídricas de este frutal cítrico en la mitad de las necesidades de la platanera/Ha.

Meses/ edad árbol/años	<1	1-2	2-3	3-4	4-5	5-6	6-7 -	7
Enero	2	3,75	5 7,5	11,5	16	19	21,	5
Febrero	2,5	4,5	5	9	17	24	28,5	32
Marzo	4	6	8	12	19	27	32	36
Abril	4	6	8	12	19	27	32	36
Mayo	5	7	9,5	14,5	23	32	38,5	43
Junio	5,5	8	10,5	16	26	36	43	48
Julio	6	8	11	17	27	37,5	45	50
Agosto	6	8	11	17	27	37,5	45	50
Septiembre	4,5	7	9	14	22	36,5	36,5	44,5
Octubre	4	6	8	12	19	26	32	36
Noviembre	3	5	6,5	10	16	22	26,5	29,5
Diciembre	2,5	3,75	5	7,5	11,5	16	19	21,5

Conductividades del rango de 1,6 milirnhos (1 gr/litro) aproximadamente en el agua habitual de riego le produce una pérdida de producti-

vidad del 10%, incrementándose éstas pérdidas en función del aumento de la conductividad.

0%	10%	25%	50%	Máximo
ECe-ECw	ECe-ECw	ECe-ECw	ECe-ECw	ECe
1,7-1,1	2,3-1,6	3,2-2,2	4,8-3,2	8
Siendo los límites con res Tipo de agua	pecto a los cloruros, sodio y b	oro los siguientes:	Cloro ppm	Boro ppm
	Na*100 Ca+Mg+Na			
Utilizable bajo · la mayoría de las condiciones	<60	4.	<75 ·	<0,5
Utilizable según , condiciones de suelo planta otros factores	60-70	4,8	75-245	0,5-2
No utilizable - bajo la mayoría de las condiciones	>70 ·	>8 ·	>245 ·	>2

A falta de aguas de mayor calidad se ha tenido que regar este cítrico en algunas zonas de Telde con aguas residuales urbanas depuradas procedentes de la Depuradora de Barranco Seco y de una muestra recogida en finca y analizada en el LABORATORIO de la G.A.E. del Cabildo de Gran Canaria se han obtenido los siguientes resultados:

	Resultados
pH	7,72
Cloruros	0,475 gr/l
Sulfatos	0,144 gr/l
Carbonatos	
Bicarbonatos	0,445 gr/l
Sodio	0,402 gr/l
Calcio	0,050 gr/l
Magnesio	0,044 gr/l
Potasio	0,026 gr/l
Amonio	22 ppm
Fósforo	15 ppm
Nitratos	13 ppm
Salesdisueltas	1,636 gr/l
S.A.R.	9,98
C.S.R.	1,16
Clase	C3S3
Conductividad	2.200 Micromhos

Pero no todo el contenido salino de esta agua procede de sales perjudiciales para la planta, ya que contiene elementos nutritivos tales como: Amonio (NH4), Nitratos (N03) y Fosfatos (en forma de P04H2 y P04H2-) y Potasio (K) en cantidades que ciftadas en riquezas fertilizantes arroja las siguientes magnitudes:

	N	P205	K20	
Grs/litro	0,0199	0,340	0,0313	

Como se considera el requerimiento hídrico anual de un naranjo adulto en 13.700 litros, el agua le aportaría considerables cantidades de sales fertilizantes al árbol que suponen al año en unidades, las siguientes magnitudes:

	N	P205	K20
Grs/litro	273	470	429

Cifradas las necesidades de fertilización anuales para un naranjo de 9 años o más en 750 grs de Nitrógeno, 400 grs de P205 y 500 grs de K20 como expresa la siguiente tabla:

Edad del árbol	N Gr/árbol	P205 Gr/árbol	K20 Gr/árbol
1 año	50	0	0
2 años	75	25	50
3 años	100	50	75
4 años	150	75	125
5 años	200	100	150
6 años	300	150	200
7 años	400	200	250
8 años	500	250	350
9 añoso más	500-750	300-400	400-500

Las cantidades N-P205-K2O que se tendrían que aportar al árbol por medio de fertilizantes serían:

	N	P205	K20
Necesidades/grs/árbol/año	750 grs	400 grs	500 grs
Grs/árbol aportado - por el agua residual/año	273 grs -	470 grs -	429 grs
Unidades fertilizantes a aportar al árbol/año	477 grs		71 grs

Dado que en el uso de esta aguas, aunque algunas de las necesidades de la planta estén cubiertas prácticamente, en este caso el fósforo y el potasio por las aportaciones de nutrientes contenidos en el agua, se recomienda mantener un cierto nivel de fertilización, por ello se ha creído conveniente mantener el grado de fertilización en el fósforo al 25% de las necesidades anuales del árbol y del 35% de las de potasio por lo anteriormente expuesto y por el principio de incremento de la fertilización en función de la conductividad del agua para corregir las pérdidas de nutrientes por lavado necesario en estas aguas y por otro lado, contrarrestar la acción iónica de sales indeseables. Por todo ello, tendríamos que aportar las siguientes unidades por árbol y año:

N	P205	K20
477 grs	100 grs	175 grs

Que se distribuirían a lo largo del año como señala la tabla que se expone:

Naranjas de primera temporada								
Mes	N%	P205%	K20%					
Enero	5	15	10					
Febrero	5	15	10					
Marzo	15	10	10					
Abril	15	5	10					
Mayo	15	5	5					
Junio	15	5	5					
Julio	10	0	15					
Agosto	10	0	15					
Septiembre	5	0	10					
Octubre	5	15	10					
Noviembre	0	15	0					
Diciembre	0	15	0					

Mes	N	P205	K20
Enero	23,85 grs	15 grs	17,5 grs
Febrero	23,85 grs	15 grs	17,5 grs
Marzo	71,55 grs	10 grs	17,5 grs
Abril	71,55 grs	5 grs	17,5 grs
Mayo	71,55 grs	5 grs	8,75 grs
Junio	71,55 grs	5 grs	8,72 grs
Julio	47,7 grs	0 grs	26,25 grs
Agosto	47,7 grs	0 grs	26,25 grs
Septiembre	23,85 grs	0 grs	17,5 grs
Octubre	23,85 grs	15 grs	17,5 grs
Noviembre	0 grs	15 grs	0 grs
Diciembre	0 grs	15 grs	0 grs

Que transformadas en abono arrojan las siguientes cantidades

Abonos	Gramos	N	P205	K20
P04H2(NH4) Fosfato Monamónico (13-63-0)	158	20,63	100	0
(NO3)K Nitrato Potásico (13-0-46)	380	49,40	0	175
(NO3)2Ca Nitrato Cálcico (15,5-0-0)	1312	203,48	0	0
(NO3)NH4 Nitrato Amónico (33,5-0-0)	607	203,49	0	0
Total		477	100	175

Distribuyéndose estas cantidades de abonos de cada mes entre todos los riegos que se le dan al árbol en el mes que se trate como se indica:

Abonos	En	Fb	Mz	Ab	Му	Jn	JI	Ag	Sep	Oc	Nv	Dc
PO4H2 (NH4)	24	24	15	8	8	8				24	24	25
(NO3)K	38	38	38	38	19	19	57	57	38	38	-	
(NO3)2Ca	65,5	65,5	197	197	197	197	131	131	65,5	65,5		
NO3(NH4)	30	30	93	93	93	92	60,5	60,5	30	30		

Cantidades expresadas en gramos de abonos por meses.

Compatibilidad de los abonos						
Abonos	P04H2(NH4)	(NO3)K	(NO3)2Ca	NO3(NH4)		
PO4H2(NH4)		+	•	+		
(NO3)K	+		+	+		
(NO3)2Ca	- 400	+	+	+		
NO3(NH4)	+	+	+			

- +: Abonos que se pueden mezclar
- -: Abonos que no se deben mezclar

Se ha tomado como una de las fuentes de nitrógeno el (N03)2 Ca para contrarrestar la acción del sodio que aporta el agua en cuestión al suelo.

Como medida cautelar, y como complemento a estas recomendaciones de fertilización, se debería hacer con cierta periodicidad análisis de hoja y tierra con objeto de valorar el correcto estado nutricional del árbol y el grado de fertilidad del suelo. Así mismo es conveniente realizar una curva de neutralización para corregir los bicarbonatos contenidos en el agua, por ejemplo con ácido nítrico que a su vez serviría como fuente de nitrógeno.

Como niveles orientativos de los distintos elementos en hoja, se consideran los siguientes para cítricos:

Elemento	Nivel deficiente	Nivel adecuado	Nivel excesivo
N(Nitrógeno) ·	<2,35%	2,45-2,8%	>2,8%
P(Fósforo)	<0,10%	0,15-0,23%	>0,23%
K(Potasio)	<0,75%	1-2%	>2%
Ca(Calcio)	<2,10	2,8-5,95%	>5,95%
Mg(Magnesio)	<0,17%	0,22-0,8%	>0,8%
S(Azufre)	<0,17%	0,23-0,5%	>0,5%
Fe(Hierro)	<35,5ppm	47,5-165ppm	>300 ppm
Zn(Zinc)	<17,5 pmm	22-125 ppm	>125 ppm
Cu(Cobre)	<4,30 ppm	5-18,5 ppm	>18,5 ppm
Mo(Molibdeno)	<0,065 ppm	0,085-0,32 ppm	>0,32 ppm
B(Boro)	<32 ppm	28-230 ppm	>230 ppm
CI(Cloro)		0,3% ·	>0,7%

Siendo considerados como referentes para la valoración de la fertilidad de un suelo los siguientes parámetros en un análisis de tierra:

Determinaciones	Valores	Determinaciones	Valores
pH	6-7	Hierro (Fe)	>4 ppm
C/N	10	Zinc (Zn) ·	>1<300 ppm
C.E. (Micromhos)	<2000	Manganeso (Mn)	>1 ppm
(C.I.C.)	Variable	Cobre (Cu)	>0,5·100 ppm
Calcio (Ca)	60-80% de la (C.I.C.)	Molibdeno (Mb)	<0,1 ppm
Magnesio (Mg)	10-20 de la (C.I.C.)	Boro (B)	0,3-0,5 ppm
Sodio (Na) ·	5% de la (C.I.C.)	Ca/Mg	4-6
Potasio (K)	3-10% de la (C.I.C)	K/Mg	0,3-0,8
Fósforo (P) ·	80 ppm	Caliza Activa ·	<6%
Materia Orgánica -	3% ppm	Carbonato Total	10-25%
Nitratos	300-350 ppm		

Bibliografía

Alvarez de la Peña, F.J., 1. 98 1. "Cultivo de la Platanera".

Amorós Castañer, M., I.99I." Riego por goteo en cítricos"

Amorós Castañer, M., 1.999. "Producción de Agrios".

Ayer R. S. y Westcot, I. 976. "Calidad del Agua para la Agricultura".

Cánovas Cuenca, J., 1.978. "Calidad Agronómica de las Aguas de Riego".

Consejería de Agricultura de la Junta de Canarias. Servicio de Extensión Agraria. 1.982. "Cítricos" (H.D.)

Domínguez Vivancos, A., 1.978. "Abonos Minerales".

Domínguez Vivancos, A., 1.996. 'Tertirigación".

F. Benet, William, "Nutrient Deficiences & Toxities in Crop Plant"

Hernández Abreu, J.M., 1.980. "Seminario sobre Interpretación de Análisis Químicos de Suelo, Agua y Planta".

Junta de Andalucía. Consejería de Agricultura y Pesca. 1.997 "Jornadas

Técnicas de Cítricos".

Marrero Domínguez, A. Y Palacios Díaz, P., 1.997. "Depuración y Reutilización de Aguas en Gran Canaria".

Martínez Feber, J., 1.980. "Cultivo del Naranjo, Limonero y otros Agrios".

Ministerio de Agricultura. 1.969. "Abonado de los Cítricos". (T)

Pérez Pérez, N.G., I.988. "Curso sobre Suelo y Riego" I.C.I.A. Consejería de Agricultura y Pesca de Canarias.